F´ Flight Software - C/C++ Documentation  devel
A framework for building embedded system applications to NASA flight quality standards.
ComQueue.cpp
Go to the documentation of this file.
1 // ======================================================================
2 // \title ComQueue.cpp
3 // \author vbai
4 // \brief cpp file for ComQueue component implementation class
5 // ======================================================================
6 
7 #include <Fw/Types/Assert.hpp>
10 
11 namespace Svc {
12 
13 // ----------------------------------------------------------------------
14 // Construction, initialization, and destruction
15 // ----------------------------------------------------------------------
16 
17 ComQueue ::QueueConfigurationTable ::QueueConfigurationTable() {
18  for (NATIVE_UINT_TYPE i = 0; i < FW_NUM_ARRAY_ELEMENTS(this->entries); i++) {
19  this->entries[i].priority = 0;
20  this->entries[i].depth = 0;
21  }
22 }
23 
24 ComQueue ::ComQueue(const char* const compName)
25  : ComQueueComponentBase(compName),
26  m_state(WAITING),
27  m_allocationId(-1),
28  m_allocator(nullptr),
29  m_allocation(nullptr) {
30  // Initialize throttles to "off"
31  for (NATIVE_UINT_TYPE i = 0; i < TOTAL_PORT_COUNT; i++) {
32  this->m_throttle[i] = false;
33  }
34 }
35 
37 
38 void ComQueue ::init(const NATIVE_INT_TYPE queueDepth, const NATIVE_INT_TYPE instance) {
39  ComQueueComponentBase::init(queueDepth, instance);
40 }
41 
43  // Deallocate memory ignoring error conditions
44  if ((this->m_allocator != nullptr) && (this->m_allocation != nullptr)) {
45  this->m_allocator->deallocate(this->m_allocationId, this->m_allocation);
46  }
47 }
48 
50  NATIVE_UINT_TYPE allocationId,
51  Fw::MemAllocator& allocator) {
52  FwIndexType currentPriorityIndex = 0;
53  NATIVE_UINT_TYPE totalAllocation = 0;
54 
55  // Store/initialize allocator members
56  this->m_allocator = &allocator;
57  this->m_allocationId = allocationId;
58  this->m_allocation = nullptr;
59 
60  // Initializes the sorted queue metadata list in priority (sorted) order. This is accomplished by walking the
61  // priority values in priority order from 0 to TOTAL_PORT_COUNT. At each priory value, the supplied queue
62  // configuration table is walked and any entry matching the current priority values is used to add queue metadata to
63  // the prioritized list. This results in priority-sorted queue metadata objects that index back into the unsorted
64  // queue data structures.
65  //
66  // The total allocation size is tracked for passing to the allocation call and is a summation of
67  // (depth * message size) for each prioritized metadata object of (depth * message size)
68  for (FwIndexType currentPriority = 0; currentPriority < TOTAL_PORT_COUNT; currentPriority++) {
69  // Walk each queue configuration entry and add them into the prioritized metadata list when matching the current
70  // priority value
71  for (NATIVE_UINT_TYPE entryIndex = 0; entryIndex < FW_NUM_ARRAY_ELEMENTS(queueConfig.entries); entryIndex++) {
72  // Check for valid configuration entry
73  FW_ASSERT(queueConfig.entries[entryIndex].priority < TOTAL_PORT_COUNT,
74  queueConfig.entries[entryIndex].priority, TOTAL_PORT_COUNT, entryIndex);
75 
76  if (currentPriority == queueConfig.entries[entryIndex].priority) {
77  // Set up the queue metadata object in order to track priority, depth, index into the queue list of the
78  // backing queue object, and message size. Both index and message size are calculated where priority and
79  // depth are copied from the configuration object.
80  QueueMetadata& entry = this->m_prioritizedList[currentPriorityIndex];
81  entry.priority = queueConfig.entries[entryIndex].priority;
82  entry.depth = queueConfig.entries[entryIndex].depth;
83  entry.index = entryIndex;
84  // Message size is determined by the type of object being stored, which in turn is determined by the
85  // index of the entry. Those lower than COM_PORT_COUNT are Fw::ComBuffers and those larger Fw::Buffer.
86  entry.msgSize = (entryIndex < COM_PORT_COUNT) ? sizeof(Fw::ComBuffer) : sizeof(Fw::Buffer);
87  totalAllocation += entry.depth * entry.msgSize;
88  currentPriorityIndex++;
89  }
90  }
91  }
92  // Allocate a single chunk of memory from the memory allocator. Memory recover is neither needed nor used.
93  bool recoverable = false;
94  this->m_allocation = this->m_allocator->allocate(this->m_allocationId, totalAllocation, recoverable);
95 
96  // Each of the backing queue objects must be supplied memory to store the queued messages. These data regions are
97  // sub-portions of the total allocated data. This memory is passed out by looping through each queue in prioritized
98  // order and passing out the memory to each queue's setup method.
99  FwSizeType allocationOffset = 0;
100  for (FwIndexType i = 0; i < TOTAL_PORT_COUNT; i++) {
101  // Get current queue's allocation size and safety check the values
102  FwSizeType allocationSize = this->m_prioritizedList[i].depth * this->m_prioritizedList[i].msgSize;
103  FW_ASSERT(this->m_prioritizedList[i].index < static_cast<FwIndexType>(FW_NUM_ARRAY_ELEMENTS(this->m_queues)),
104  this->m_prioritizedList[i].index);
105  FW_ASSERT((allocationSize + allocationOffset) <= totalAllocation, allocationSize, allocationOffset,
106  totalAllocation);
107 
108  // Setup queue's memory allocation, depth, and message size. Setup is skipped for a depth 0 queue
109  if (allocationSize > 0) {
110  this->m_queues[this->m_prioritizedList[i].index].setup(
111  reinterpret_cast<U8*>(this->m_allocation) + allocationOffset, allocationSize,
112  this->m_prioritizedList[i].depth, this->m_prioritizedList[i].msgSize);
113  }
114  allocationOffset += allocationSize;
115  }
116  // Safety check that all memory was used as expected
117  FW_ASSERT(allocationOffset == totalAllocation, allocationOffset, totalAllocation);
118 }
119 // ----------------------------------------------------------------------
120 // Handler implementations for user-defined typed input ports
121 // ----------------------------------------------------------------------
122 
123 void ComQueue::comQueueIn_handler(const NATIVE_INT_TYPE portNum, Fw::ComBuffer& data, U32 context) {
124  // Ensure that the port number of comQueueIn is consistent with the expectation
125  FW_ASSERT(portNum >= 0 && portNum < COM_PORT_COUNT, portNum);
126  this->enqueue(portNum, QueueType::COM_QUEUE, reinterpret_cast<const U8*>(&data), sizeof(Fw::ComBuffer));
127 }
128 
129 void ComQueue::buffQueueIn_handler(const NATIVE_INT_TYPE portNum, Fw::Buffer& fwBuffer) {
130  const NATIVE_INT_TYPE queueNum = portNum + COM_PORT_COUNT;
131  // Ensure that the port number of buffQueueIn is consistent with the expectation
132  FW_ASSERT(portNum >= 0 && portNum < BUFFER_PORT_COUNT, portNum);
133  FW_ASSERT(queueNum < TOTAL_PORT_COUNT);
134  this->enqueue(queueNum, QueueType::BUFFER_QUEUE, reinterpret_cast<const U8*>(&fwBuffer), sizeof(Fw::Buffer));
135 }
136 
137 void ComQueue::comStatusIn_handler(const NATIVE_INT_TYPE portNum, Fw::Success& condition) {
138  switch (this->m_state) {
139  // On success, the queue should be processed. On failure, the component should still wait.
140  case WAITING:
141  if (condition.e == Fw::Success::SUCCESS) {
142  this->m_state = READY;
143  this->processQueue();
144  // A message may or may not be sent. Thus, READY or WAITING are acceptable final states.
145  FW_ASSERT((this->m_state == WAITING || this->m_state == READY), this->m_state);
146  } else {
147  this->m_state = WAITING;
148  }
149  break;
150  // Both READY and unknown states should not be possible at this point. To receive a status message we must be
151  // one of the WAITING or RETRY states.
152  default:
153  FW_ASSERT(0, this->m_state);
154  break;
155  }
156 }
157 
158 void ComQueue::run_handler(const NATIVE_INT_TYPE portNum, NATIVE_UINT_TYPE context) {
159  // Downlink the high-water marks for the Fw::ComBuffer array types
160  ComQueueDepth comQueueDepth;
161  for (FwSizeType i = 0; i < comQueueDepth.SIZE; i++) {
162  comQueueDepth[i] = this->m_queues[i].get_high_water_mark();
163  this->m_queues[i].clear_high_water_mark();
164  }
165  this->tlmWrite_comQueueDepth(comQueueDepth);
166 
167  // Downlink the high-water marks for the Fw::Buffer array types
168  BuffQueueDepth buffQueueDepth;
169  for (FwSizeType i = 0; i < buffQueueDepth.SIZE; i++) {
170  buffQueueDepth[i] = this->m_queues[i + COM_PORT_COUNT].get_high_water_mark();
171  this->m_queues[i + COM_PORT_COUNT].clear_high_water_mark();
172  }
173  this->tlmWrite_buffQueueDepth(buffQueueDepth);
174 }
175 
176 // ----------------------------------------------------------------------
177 // Private helper methods
178 // ----------------------------------------------------------------------
179 
180 void ComQueue::enqueue(const FwIndexType queueNum, QueueType queueType, const U8* data, const FwSizeType size) {
181  // Enqueue the given message onto the matching queue. When no space is available then emit the queue overflow event,
182  // set the appropriate throttle, and move on. Will assert if passed a message for a depth 0 queue.
183  const FwSizeType expectedSize = (queueType == QueueType::COM_QUEUE) ? sizeof(Fw::ComBuffer) : sizeof(Fw::Buffer);
184  const FwIndexType portNum = queueNum - ((queueType == QueueType::COM_QUEUE) ? 0 : COM_PORT_COUNT);
185  FW_ASSERT(expectedSize == size, size, expectedSize);
186  FW_ASSERT(portNum >= 0, portNum);
187  Fw::SerializeStatus status = this->m_queues[queueNum].enqueue(data, size);
188  if (status == Fw::FW_SERIALIZE_NO_ROOM_LEFT && !this->m_throttle[queueNum]) {
189  this->log_WARNING_HI_QueueOverflow(queueType, portNum);
190  this->m_throttle[queueNum] = true;
191  }
192  // When the component is already in READY state process the queue to send out the next available message immediately
193  if (this->m_state == READY) {
194  this->processQueue();
195  }
196 }
197 
198 void ComQueue::sendComBuffer(Fw::ComBuffer& comBuffer) {
199  FW_ASSERT(this->m_state == READY);
200  this->comQueueSend_out(0, comBuffer, 0);
201  this->m_state = WAITING;
202 }
203 
204 void ComQueue::sendBuffer(Fw::Buffer& buffer) {
205  // Retry buffer expected to be cleared as we are either transferring ownership or have already deallocated it.
206  FW_ASSERT(this->m_state == READY);
207  this->buffQueueSend_out(0, buffer);
208  this->m_state = WAITING;
209 }
210 
211 void ComQueue::processQueue() {
212  FwIndexType priorityIndex = 0;
213  FwIndexType sendPriority = 0;
214  // Check that we are in the appropriate state
215  FW_ASSERT(this->m_state == READY);
216 
217  // Walk all the queues in priority order. Send the first message that is available in priority order. No balancing
218  // is done within this loop.
219  for (priorityIndex = 0; priorityIndex < TOTAL_PORT_COUNT; priorityIndex++) {
220  QueueMetadata& entry = this->m_prioritizedList[priorityIndex];
221  Types::Queue& queue = this->m_queues[entry.index];
222 
223  // Continue onto next prioritized queue if there is no items in the current queue
224  if (queue.getQueueSize() == 0) {
225  continue;
226  }
227 
228  // Send out the message based on the type
229  if (entry.index < COM_PORT_COUNT) {
230  Fw::ComBuffer comBuffer;
231  queue.dequeue(reinterpret_cast<U8*>(&comBuffer), sizeof(comBuffer));
232  this->sendComBuffer(comBuffer);
233  } else {
234  Fw::Buffer buffer;
235  queue.dequeue(reinterpret_cast<U8*>(&buffer), sizeof(buffer));
236  this->sendBuffer(buffer);
237  }
238 
239  // Update the throttle and the index that was just sent
240  this->m_throttle[entry.index] = false;
241 
242  // Priority used in the next loop
243  sendPriority = entry.priority;
244  break;
245  }
246 
247  // Starting on the priority entry after the one dispatched and continuing through the end of the set of entries that
248  // share the same priority, rotate those entries such that the currently dispatched queue is last and the rest are
249  // shifted up by one. This effectively round-robins the queues of the same priority.
250  for (priorityIndex++;
251  priorityIndex < TOTAL_PORT_COUNT && (this->m_prioritizedList[priorityIndex].priority == sendPriority);
252  priorityIndex++) {
253  // Swap the previous entry with this one.
254  QueueMetadata temp = this->m_prioritizedList[priorityIndex];
255  this->m_prioritizedList[priorityIndex] = this->m_prioritizedList[priorityIndex - 1];
256  this->m_prioritizedList[priorityIndex - 1] = temp;
257  }
258 }
259 } // end namespace Svc
#define FW_ASSERT(...)
Definition: Assert.hpp:14
PlatformIntType NATIVE_INT_TYPE
Definition: BasicTypes.h:51
uint8_t U8
8-bit unsigned integer
Definition: BasicTypes.h:26
#define FW_NUM_ARRAY_ELEMENTS(a)
number of elements in an array
Definition: BasicTypes.h:66
PlatformUIntType NATIVE_UINT_TYPE
Definition: BasicTypes.h:52
C++ header for working with basic fprime types.
PlatformSizeType FwSizeType
Definition: FpConfig.h:18
PlatformIndexType FwIndexType
Definition: FpConfig.h:15
virtual void deallocate(const NATIVE_UINT_TYPE identifier, void *ptr)=0
Deallocate memory.
virtual void * allocate(const NATIVE_UINT_TYPE identifier, NATIVE_UINT_TYPE &size, bool &recoverable)=0
Allocate memory.
void init()
Object initializer.
Definition: ObjBase.cpp:27
Success/Failure.
T e
The raw enum value.
@ SUCCESS
Representing success.
Auto-generated base for ComQueue component.
void buffQueueSend_out(NATIVE_INT_TYPE portNum, Fw::Buffer &fwBuffer)
Invoke output port buffQueueSend.
void comQueueSend_out(NATIVE_INT_TYPE portNum, Fw::ComBuffer &data, U32 context)
Invoke output port comQueueSend.
void tlmWrite_comQueueDepth(const Svc::ComQueueDepth &arg, Fw::Time _tlmTime=Fw::Time())
void tlmWrite_buffQueueDepth(const Svc::BuffQueueDepth &arg, Fw::Time _tlmTime=Fw::Time())
void log_WARNING_HI_QueueOverflow(Svc::QueueType queueType, U32 index)
ComQueue(const char *const compName)
Definition: ComQueue.cpp:24
void configure(QueueConfigurationTable queueConfig, NATIVE_UINT_TYPE allocationId, Fw::MemAllocator &allocator)
Definition: ComQueue.cpp:49
void cleanup()
Definition: ComQueue.cpp:42
static const FwIndexType BUFFER_PORT_COUNT
Total count of input buffer ports and thus total queues.
Definition: ComQueue.hpp:29
static const FwIndexType COM_PORT_COUNT
< Count of Fw::Com input ports and thus Fw::Com queues
Definition: ComQueue.hpp:26
static const FwIndexType TOTAL_PORT_COUNT
Definition: ComQueue.hpp:32
NATIVE_UINT_TYPE getQueueSize() const
Definition: Queue.cpp:50
void setup(U8 *const storage, const FwSizeType storage_size, const FwSizeType depth, const FwSizeType message_size)
setup the queue object to setup storage
Definition: Queue.cpp:17
Fw::SerializeStatus dequeue(U8 *const message, const FwSizeType size)
pops a fixed-size message off the front of the queue
Definition: Queue.cpp:31
Fw::SerializeStatus enqueue(const U8 *const message, const FwSizeType size)
pushes a fixed-size message onto the back of the queue
Definition: Queue.cpp:25
NATIVE_UINT_TYPE get_high_water_mark() const
Definition: Queue.cpp:41
void clear_high_water_mark()
Definition: Queue.cpp:46
SerializeStatus
forward declaration for string
@ FW_SERIALIZE_NO_ROOM_LEFT
No room left in the buffer to serialize data.
FwIndexType priority
Priority of the queue [0, TOTAL_PORT_COUNT)
Definition: ComQueue.hpp:47
FwSizeType depth
Depth of the queue [0, infinity)
Definition: ComQueue.hpp:46
configuration table for each queue
Definition: ComQueue.hpp:59
QueueConfigurationEntry entries[TOTAL_PORT_COUNT]
Definition: ComQueue.hpp:60